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Abstract 

Evidence of the breakdown of Frieders law in the 
Kikuchi patterns of tellurium crystals has been observed 
with a standard transmission electron microscope 
(TEM). These observations give a direct method of 
identifying enantiomorphously related phases in the 
TEM. An interpretation of the observed deviations 
from Frieders law is proposed on the basis of the model 
of Thomas & Humphreys [Phys. Status Solidi A 
(1970). 3, 599-6151 for Kikuchi patterns. The possible 
differences between the phases of the Fourier coeffici- 
ents of the crystal potential and of the absorption 
potential have to be taken into account. Some light is 
thrown on the physical significance of the phenomeno- 
logical parameters. 

1. Introduction 

In this paper, we investigate a new method for 
identifying non-centrosymmetry in the structure of 
crystals, based upon the observation of Kikuchi 
patterns in a transmission electron microscope. 

A large amount of work has been devoted to the 
problem of identifying non-centrosymmetry and 
enantiomorphism by electron diffraction or imaging 
techniques (Goodman & Lehmpfuhl, 1968; Goodman 
& Secomb, 1977; Van der Biest & Thomas, 1975; 
Steeds, Tatlock & Hampton, 1973). To reveal the lack 
of a center of symmetry and, afortiori, to identify 
enantiomorphously related phases, one has to look for 
deviations from Frieders law, i.e. for a difference 
between the intensity of +g and - g  diffractions. 

Friedel's law is a property of the equations of 
diffraction in the kinematical approximation and in the 
two-beam dynamical approximation without ab- 
sorption (Laue, 1948). Only one structure factor is 
involved in these approximations. The breakdown of 
Friedel's law occurs when several structure factors with 
different phases are introduced to take into account 
either many-beam effects or anomalous absorption 
effects. 
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In most papers that have been published on the 
breakdown of Friedel's law, interest is focused on 
many-beam effects. Absorption effects are more or less 
eliminated by using images or diffraction patterns from 
thin or very thin regions of the crystal. 

The present work gives evidence of the breakdown of 
Friedel's law related mainly to the anomalous ab- 
sorption effect. Kikuchi patterns from regions as thick 
as possible are used. As has been stressed by Gevers, 
Blank & Amelinckx (1966), in order that anomalous 
absorption effects can explain a deviation from 
Friedel's law, it is necessary to introduce into the 
calculation the relative phases fig of the absorption 
potential. They are defined by 

-- tog exp i~g, (1) 
L 

V z and V~ being the Fourier coefficients of the crystal 
potential and of the absorption 'potential' respectively. 

Theoretical and experimental estimations of the 
modulus tog are available in the literature (tOg --~ 0.1 for 
low-index diffractions), but almost nothing is known 
about the phases fig. However, contrasts have been 
observed on the boundaries between domains in 
BaTiO 3 and attributed to these phases (Snykers, 
Serneels, Delavignette, Gevers, Van Landuyt & 
Amelinckx, 1977). As any value of tOg may be, apriori, 
considered, very strong deviations from Frieders law 
due to absorption effects appear possible while the devi- 
ations due to many-beam effects are always small at 
100 kV. 

2. Experimental results for tellurium 

Our material is trigonal tellurium. The structure of this 
crystal is represented in Fig. 1. It belongs to one or 
other of the two enantiomorphously related space 
groups P3~ 12 (D]) (right-handed screw axis, crystal r 
in Fig. 1) or P3212 (D~) (left-handed screw axis, 
crystal l). The high atomic number (Z = 52) of this 
element favors strong absorption effects. 
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The structure factors at 100 kV of the main 
diffractions of Te are given in Table 1. Failures of 
Friedel's law can appear only on Kikuchi bands of 
diffracting planes which are not parallel to a binary 
axis: all the diffractions having one of their three first 
indices equal to zero are thus eliminated. Only two 
sufficiently strong diffractions are available for our 
study: 1120 and 1123. 

The crystal was oriented in the symmetrical Laue 
position for the diffraction investigated; photographs of 
the Kikuchi pattern in this orientation were taken on 
glass plates and several microdensitometer scans were 
done on each plate along directions orthogonal to the 
Kikuchi lines at different distances from the center of 
the pattern. We looked for asymmetry in the densitom- 
eter profiles. We measured the intensities I+ and I_ of 
the two maxima +g and - g  above the background 
intensity of the profile and calculated the asymmetry 
ratio 

A I / I =  311+ - [_1/(I+ + I_). 

The orientation of the crystal with respect to the 
incident beam is not completely determined by the 

Table 1. Structure factors o f  the main diffractions o f  
Te 

g IFgl 2 (A 2) 

10il 407 
1012 261 
0003 217 
1120 181 
2021 116 
10i4 96 
2022 87 
1123 80 

c 

- '~'(hki) ~;(F~.O 

XX)'(,.,, 
/ 

Fig. 1. Sketch of the atomic structure of two Te crystals, l and r, 
related by an inversion operation, and of their Kikuchi patterns 
(see text), c is the threefold helical axis. The conventional axes for 
hexagonal-type indexing are represented by bold lines. The same 
direction has indices x~x2x 3 in the r crystal and ~r~2x3 in the l 
crystal. Each diffracting plane can be given two ind_exings 
following the structure assumed for the crystal: (hk. l) r or (hk. l) z. 

condition that it is in the Laue position for the 
diffraction g. Two experimental situations can be 
realized depending whether the incident beam is close 
to or far from any low-index zone axis. 

2.1. Isolated bands 

The diffraction g under investigation is the only 
strong diffraction that appears on the screen. It is then 
reasonable to assume that the intensity profile of the g 
band is due only to the systematic set of diffractions ng 
and to compare the experimental profile with the 
corresponding systematic n-beam calculation. 

It appears, however, that, for both 1120 and 1123 
diffractions, the densitometer profiles exhibit broad 
intensity peaks of irregular shape; the comparison with 
the calculated profile is not quite satisfactory. Further- 
more, there is a wide dispersion among the ratios All1 
measured on different plates. 

Several perturbations of the isolated profiles may be 
responsible for the dispersion of the results: 

(1) The Laue position is realized with more or less 
accuracy (+ 10'). The faces of the foil are not parallel to 
g. These two deviations from the perfectly symmetrical 
experimental conditions produce asymmetries in the 
profile which are to be considered as artefacts in the 
present study. However, one can make sure that these 
perturbations are much smaller than the effect in- 
vestigated (Thomas, 1972). 

(2) The background intensity is not uniform: it varies 
in a more or less monotonic way from one side of the 
plate to the other. This phenomenon is due to the 
irregular shape of the foil: it is related to the difficulty of 
preparing neat, regular, thin foils from Te crystals. The 
background intensity at each point of the plates has to 
be defined in an empirical way. An error in the 
measurement of AI / I  is then obviously introduced. 

(3) On each point of the band, interactions occur 
with Kikuchi lines of high indices. The perturbation 
produced on the profile of the g band by the line h 
depends on the ratios I Fn_JFzl and I Fa/Fgl; it may be 
noticeable even if the structure factor of  h is low. These 
perturbations are likely to be rather important, since the 
diffractions under study are not the strongest of the 
crystal. 

We assume that all these perturbations combine to 
give more or less random deviations of the experi- 
mental profiles from the theoretical systematic 'isolated' 
profile. We thus set up for each band of a crystal an 
'average experimental profile' in performing the ad- 
dition of all the individual scans on the same band from 
one plate and from different plates corresponding to 
different orientations.* It appears that the average 

* In doing this, we found that the ratio Al/l varies systematically 
with the distance of the scan from the center of the pattern when 
this distance is large enough (see §4). The results of the present 
section correspond to scans not too far from the center and to very 
thick crystals. 
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profiles obtained by this method have much narrower 
peaks than the individual profiles and agree fairly well 
with the calculated profiles (Figs. 2 and 3). 

The dispersion among the ratios AI/I measured on 
the different average profiles is very small (Fig. 4). We 
therefore consider that the average profiles correspond 
with g o o d  precis ion to theoretical  isolated profiles. 

Two results then come out or our observations: 
(a) the 1123 band exhibits no asymmetry; 

(AIII)I 1~3 ~- O, 
(b) the 1120  band exhibits  a not iceable  a symmetry :  

(dlII)l12o ~-- O. 15. 

2.2. Zone  axis patterns 

Fig. 5 shows the pattern obtained when the incident 
beam is parallel to a zone  axis u = (20. [ ) r  or (20.1) t 
for r or I crysta ls  respect ively .  

The difference between the intensities of the two 
segments  AB and A ' B '  o f  the 1190  band w a s  easi ly 
seen on the plate and is still visible on the print. It is 
confirmed by the densitometer scan. 

Similar asymmetries can be seen on the (1 [ .3)  and 
(00.1)  patterns,  but they are m u c h  fainter (Le  Goff ,  
1978). 

(a) '1113 

_.,,,._J i 
-2 -1 o 1 2 

(b) 
1113 

Near the center of the pattern, where the segments 
AB and A'B' lie, a large number of strong diffractions 

1.00 

/ A.°'' / i  

j't/t. 
-2 -1 0 1 2 
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• h 1 . 0 0  

-2 -i 6 i 
(b) 

Fig. 3. Intensity profile of the 1120 Kikuchi band of Te, (a) 
average experimental profile, (b) computed profile fl: = 30 °, ft,: = 
0 for n > 1, o9 = 0.085. 
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Fig. 2. Intensity profile of the 1123 Kikuchi band of Te, (a) 
average experimental profile, (b) computed profile following the 
model of Thomas & Humphreys (1970) with #,z = 0 for each n, 
o9=0.1.  

Fig. 4. Dispersion among several average experimental profiles of 
the 1120 band, the value of the +g maximum being chosen as 
unity. 
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interact; many-beam effects combine with anomalous 
absorption effects to produce a more pronounced 
asymmetry than on the isolated band. However, we 
must examine an alternative explanation for the strong 
asymmetry observed in Fig. 5; it could come from 
interactions of the 1120 band with high-order Kikuchi 
lines. No such line is visible in this region, but 
corresponding diffractions could nevertheless produce a 
noticeable perturbation. This last explanation can be 
discarded by the following procedure: on the print, we 
draw all the lines passing through the regions A B  and 
A'B '  and we calculate their structure factors. None of 
them has a structure factor large enough to explain the 
observed effect. Another procedure which can also be 
used is to give a (slight) change to the accelerating 
voltage; the high-order lines are displaced relative to 
the 1120 band. 

A"B' 

Fig. 5. (20.i) r zone axis pattern of Te. The microdensitometer 
scan confirms the asymmetry between the intensities of the 
segments AB and A'B' of the 1120-1120 lines. The line 
which has the strongest intensity on this pattern (A'B') has also 
the strongest intensity on the isolated profiles: it can be indexed 
as (1120) r or (i i20) t. 

3. Identification of the enantlomorphously related 
phases 

Up to now, the observations we have reported 
demonstrate only that crystals of Te do not belong to a 
centrosymmetrie group. We will yet show that they 
allow us to identify the two phases r and l of Fig. 1. 

In Fig. 1, two crystals are represented, which are 
related by an inversion operation: an r crystal and an l 
crystal in a specific orientation relation (they have the 
same lattice). We consider the two patterns produced 
by these two crystals when they are illuminated by the 
same incident beam parallel to a zone axis u. It is 
assumed__ that asymmetry is visible on the (kk.l) r or 
(kk.l) t band respectively. 

The zone-axis pattern can be considered as com- 
posed of two parts or sub-patterns: 

(a) The 'zero-pattern' produced by the diffractions 
belonging to the zero-order Laue layer (diffractions 
such that g. u = 0, bold lines in Fig. 1). 

(b) The 'non-zero-pattern' produced by the diffrac- 
tions belonging to Laue layers of order n greater than 
zero (g. u = n > 0, broken lines in Fig. 1). 

Reduced to the diffracting planes of the zero layer, 
the crystal is symmetric with respect to the plane of 
normal u; hence, applying inversion to it is equivalent 
to a rotation of 180 ° around u. The zero patterns of the 
two crystals in Fig. 1 are thus related by this rotation, 
or else by inversion in the plane of the pattern around 
its center U, the trace of u on this plane. If Friedel's law 
applies, or if u is a binary axis of the crystal, the zero 
pattern is symmetrical about U; if not, this symmetry is 
broken. 

The non-zero pattern is not symmetrical with respect 
to U, except if u is a binary axis. It is not displaced by 
an inversion of the crystal. The lines composing this 
pattern are produced in the conditions where the 
kinematical approximation is valid; their intensity 
should not be significantly modified by the inversion of 
the crystal. The non-zero patterns are therefore 
identical for both r and l. 

The complete patterns are thus different and can be 
immediately identified. By examining a crystal belong- 
ing to a known phase, one can determine once for all 
which pattern corresponds to which phase. 

The Te single crystals out of which our thin foils 
were made all belonged to the dextrorotatory phase. 
This was determined by the etch-pits technique (Blake- 
more & Nomura, 1961; Ades & Champness, 
1975; Koma, Takimoto & Tanaka, 1970). As expec- 
ted, all the (20.1) patterns that we observed were 
identical. The pattern of Fig. 5 is thus a pattern of 
dextrorotatory Te. 

It often happens that the non-zero pattern is not 
visible. Obviously, the zero-pattern alone does not 
allow the identification of the enantiomorphous phases, 
even if it exhibits a breakdown of Friedel's law; an 
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ambiguity remains on the orientation of the crystal. 
This ambiguity is easily removed by tilting the crystal. 
For this reason, the enantiomorphism can also be 
determined by noting the sense of the asymmetry of the 
isolated band. 

4. Theoretical interpretation 

We shall use the simplest model available for the 
interpretation of the Kikuchi patterns, the model 
developed by Thomas & Humphreys (1970). Following 
this model, Kikuchi patterns are equivalent to channel- 
ling patterns. The intensity K(k) at a point k of the 
Kikuchi pattern is given by 

K(k) = Z I(--k,--kg), (2) 
R 

where I(k~, k2) is the intensity emerging from the 
crystal in the k 2 direction when it is illuminated by a 
beam of wave vector kt and of intensity 1. In the 
calculation of the isolated band profile, K is a function 
of only one variable, the angular deviation of k from the 
Laue position and the summation in (2) is limited to the 
set ng of the systematic diffractions. 

As already mentioned, the agreement between the 
experimental average profiles and the many-beam 
calculation following this model is satisfactory. How- 
ever, for each of the beams taken into account, two 
phenomenological parameters have to be introduced 
into the computation: the modulus Wng and the phase 
difference f,g defined by (1).* 

It comes out from the computation that the 
asymmetry ratio A 1 / 1  depends mainly on the first 
parameters wg and fig. An estimation based on the two- 
beam approximation can then be given. Following (2), 
one obtains easily for the intensity profile near the 
maximum +g (Gevers, Blank & Amelinckx, 1966): 

W 
K ( w )  = cosh x + sinh x 

(1 + w2) ''2 

sinh (2x/2) 
-2cogsinfg l + w 2 ' (3) 

where w = sg~g is the reduced deviation parameter for g 
diffraction and where 

2zt t 
x = cog cos f g  - -  , (4) 

l + w2 ~g 

t being the thickness of the foil and ~g the extinction 
distance. 

* The number of independent parameters is reduced by the 
condition that the two potentials V(r) and V'(r) be real: 

~_,~ = ~o,~. fl ,~ = -/~,~. 

In our case, t >> ~g and x >> 1. The intensity maximum 
occurs near the exact Bragg position w = 0. From (3), 
one obtains 

L ,p 
-7- ~- 2o9g sin fig. (5) 

If we take for o2g the conventional value of O. l, we 
find 1fill201 ~-- 50 °. 

Computations show that even when more than two 
beams are taken into account, the asymmetry of the 
1120 band can be explained only with the assumption 
that filE0 is not z e r o  (Ifll20l > 30°). On the contrary, 
we find f1123 ~ 0. 

The two-beam calculation (5) leaves an indeter- 
mination in the sign of the phase ]~l 1i0. The side of the 
band which has the lowest intensity is the side which 
has a positive value of fig. It thus appears (in Fig. 5 for 
example) that the determination of the sign offll~20 and 
the absolute determination of the handedness of dextro- 
rotatory Te are the same problem: either fl~20 is 
positive and dextrorotatory Te is right-handed, or fl~120 
is negative and dextrorotatory Te is left-handed. Since 
the real structure factors are easily calculated from the 
crystal structure, many-beam effects allow the absolute 
determination of the handedness. Asymmetric features 
related to many-beam interactions appear in the 
calculated profiles of the 1120 band. It is therefore 
possible in principle to determine by the present method 
both the handedness of the crystal and the sign of the 
phases fig. This result has not been reached yet in the 
case of Te because of the difficulty of ensuring 
reproducibility of the details of the average experi- 
mental profiles. 

Discussion 

The model of Thomas & Humphreys (1970), 
generalized for non-centrosymmetric crystals by intro- 
ducing the phase fig, gives a coherent interpretation 
both of the Kikuchi bands and of the deviations from 
Friedel's law that we have observed. 

At the present time, our interpretation of the 
deviations from Friedel's law in the Kikuchi pattern is 
essentially phenomenological. Theoretical calculations 
of the absorption potential have been realized by 
several authors (see Humphreys & Hirsch, 1968; Radi, 
1970); they are based on the theory of Yoshioka 
(1957). However, the quantity which is calculated in 
this theory (in addition to the fact that the computation 
cannot be precise) concerns 'absorption' of the purely 
elastically scattered electrons, whereas, in TEM, 
elastically and quasi-elastically scattered electrons are 
not separated. One remark can however be made; the 
theory gives no argument to support the idea that the 
absorption potential can be written in the same way as 
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the crystal potential as a sum over the atoms of the 
basis of individual spherically symmetric atomic poten- 
tials. This means that the theory does not support the 
simplifying assumption that the phases fig are equal to 
zero. 

How can we justify the evaluations given for the two 
phases /~1120 and fl¿~3 of Te? Fig. 6 gives a first 
phenomenological answer. The asymmetry of the 

lV , , i 

2p 1 - p 11"~0 

l 
v i 

11~3 
Fig. 6. Scattering potentials V(r.g) =_~"n V,~ exp[2ning.r] for the 

two systematic rows 1120 and 1123. The maxima are located 
at the projections ofthe atoms on the row: 2p and I -p ,  where p 
is the ratio of the radius of the helical chains to the lattice par- 
ameter. 
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Fig. 7. Variation of the asymmetry ratio AI/I of the l l20 band of 
Te with the distance from the central line of the pattern. A series 
of parallel scans was made on each plate at various angular 
distances (0) from the systematic row. Each point is obtained by 
averaging the scans corresponding to the same distance 0 and to 
the same crystal thickness. 0g is the Bragg angle. 

Kikuchi band profile and thus the value of fix is 
correlated to the asymmetry of the diffracting potential 
of the systematic row. 

The model of the equivalent divergent beam for a 
Kikuchi band offers an alternative interpretation of the 
breakdown of Friedel's law in Kikuchi patterns. In the 
version of Thomas & Humphreys  (1970), it is assumed 
that the intensity distribution in the divergent beam is 
uniform. In the more sophisticated version of Thomas 
(1972), this distribution is not uniform and varies with 
the thickness of the crystal. In the case of a non-centro- 
symmetric crystal, there is no reason to eliminate the 
possibility that the intensity distribution itself is asym- 
metric even in the symmetrical Laue position. In this 
case, the asymmetry of the intensity profile of the 
Kikuchi band should vary with the thickness of the 
crystal. 

Fig. 7 shows the value of the asymmetry ratio 
(d / / I )  1120 as a function of two parameters: the thick- 
ness t of the crystal and the angular distance, 0, of the 
line of scanning from the central line of the pattern. 
Three facts are established: (1) near the central line, the 
dispersion is very small (see Fig. 4). A I / I  does not vary 
with the thickness t if t is large enough. (2) At angular 
distances 0 of the order of the Bragg angle, A I / I  
decreases with 0 and changes its sign for larger values 
of 0. (3) This variation with 0 is more rapid if the 
crystal is thin. It is negligible for the thickest crystals. 

The use of the model of Thomas & Humphreys  
seems thus to be completely justified near the center of 
the Kikuchi pattern of the thickest crystals. 

On the other hand, the inversion of the asymmetry 
far from the center of the diagram cannot be explained 
with this model, even in the more complete version 
given by Thomas. It probably indicates a fundamental  
shortcoming of the model, as does the well known 
phenomenon of contrast inversion of Kikuchi bands 
(Thomas, 1972). It is hoped that systematic measure- 
ments of the asymmetry ratio of the Kikuchi bands of 
non-centrosymmetric crystals as a function of various 
physical parameters will give some valuable new 
information on the mechanism of the formation of 
Kikuchi patterns. 

References  

ADES, S. • CHAMPNESS, C. H. (1975). J. Opt. Soc. Am. 65, 
217-218. 

BLAKEMORE, J. S. & NOMURA, K. C. (1961). J. Appl. Phys. 
32, 745-746. 

GEVERS, R., BLANK, n. & AMELINCKX, S. (1966). Phys. 
Status Solidi, 13, 449-465. 

GOODMAN, P. & LEHMPFUHL, G. (1968). Acta Cryst. A24, 
339-347. 

GOODMAN, P. t~ SECOMB, T. W. (1977). Acta Cryst. A33, 
126-133. 

HUMPHREVS, C. J. & HmSCH, P. B. (1968). Philos. Mag. 18, 
115-122. 



610 THE KIKUCHI PATTERNS OF TELLURIUM 

KOMA, A., TAKIMOTO, E. & TANAKA, S. (1970). Phys. 
Status Solidi, 40, 239-248. 

LAUE, M. YON (1948). Rdntgenstrahlinterferezen. Leipzig: 
Akademische Verlag. 

LE GOFF, J. J. (1978). Th6se de 36me cycle, Univ. Paris 
XIIl. 

RADI, G. (1970). Acta Cryst. A26, 41-56. 
SNYKERS, M., SERNEELS, R., DELAVIGNETrE, P., GEVERS, 

R., VAN LANDUYT, J. & AMELINCKX, S. (1977). Phys. 
Status Solidi A, 41, 51-63. 

STEEDS, J. W., TATLOCK, G. J. & HAMPTON, J. (1973). 
Nature (London), 241, 435-439. 

THOMAS, L. E. (1972). Philos. Mag. 26, 1447-1465. 

THOMAS, L. E. & HUMPHREYS, C. J. (1970). Phys. Status 
Solidi,l, 3, 599-615. 

VAN DER BLEST, O. & THOMAS, G. (1977). Acta Cryst. A33, 
618-621. 

YOSHIOKA, U. (1957). J. Phys. Soc. Jpn, 12, 618-628. 

Acta Cryst. (1979). A35, 610-613 

On the Contributions of the Internal Modes of Molecules to the Debye--Waller Factors. 
II. Theoretical Considerations 

BY C. SCHERINGER 

Institut fffr Mineralogie der Universitdt Marburg, D3550 Marburg, Federal Republic of  Germany 

AND m. FADINI 

Institut fiir Anorganische Chemie der Universitdt Tffbingen, D 7400 Tffbingen, Federal Republic of  Germany 

(Received 2 January 1979; accepted 12 February 1979) 

Abstract 

It is shown that the expressions for the contributions of 
the internal modes of molecules to the Debye-Waller 
factors as derived, on the one hand, by means of lattice 
dynamics and, on the other hand, by means of the FG 
method common in spectroscopy, are identical after 
some approximations have been made in the lattice 
dynamical formulation. It is pointed out that for those 
methods of establishing the force constant matrix of the 
internal modes, where the eigenvalues of the FG matrix 
are constrained to be the squares of the observed 
frequencies, only standard eigenvector routines need be 
applied in determining the mean-square-amplitude 
matrix. Hence, in this case, series expansions which 
were suggested to circumvent the determination of 
eigenvalues are superfluous. 

1. Introduction 

The calculation of the contributions of the internal 
modes of molecules to the Debye--Waller factors 
should follow a theory of the crystal (lattice dynamics), 
but, as a rule, crystallographers adopt the FG method 
which was established in spectroscopy and refers to 
isolated molecules. If one starts from the equations of 
lattice dynamics and eliminates the typical (inter- 
molecular) crystal effects, the equations of lattice 
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dynamics should become equivalent with those of the 
FG matrix formalism. This equivalence, which is not 
obvious, will be proved in this paper. 

In a further part of the paper, we show how the 
formalism of the FG method can be simplified by intro- 
ducing standard eigenvector routines. The mean- 
square-amplitude matrix of the internal modes of the 
molecules then can often be obtained in a simple 
fashion, and the series expansions proposed (Cyvin, 
1968; Oystein, 1972) are superfluous. 

2. The lattice dynamical approach 

Here we make use of the description which was 
developed in earlier work (Scheringer, 1972a,b). The 
3n x 3n mean-square-amplitude matrix U of the n 
atoms in the unit cell is given by 

U = N - 1  Q ~ (RA -t r~)q QT. (1) 
q 

The superscript T denotes the transposed matrix, - 1  
the inverse, and ~ the conjugate complex transposed 
matrix. N is the number of cells in the crystal, Q a 
3n x 3n diagonal matrix, with the 3 elements m; v2 for 
the rth atom (mr = mass). A(q) is a 3n x 3n diagonal 
matrix containing, as elements, the squares of the 
frequencies toj(q), q denotes a wave vector of the 
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